PERFORMANCE OF UTILITY POWER CONNECTIONS IN A SALINE ENVIRONMENT

B. Johnson Tyco Electronics,20 Esna Park Drive Markham, Ontario, Canada, L3R 1E1

M. Braunovic MB Interface, 5975 Place de l'Authion, Suite 503 Montreal, Quebec, Canada, H1M 2W3

BACKGROUND

- Connector is generally a weak link in the distribution system.
- Some connector designs lack the ability to provide effective long-term performance.
- Corrosion is considered as one of the most significant reliability concern.
- Corrosion is particularly severe in some areas when connections has to be made between dissimilar metals.

OBJECTIVES

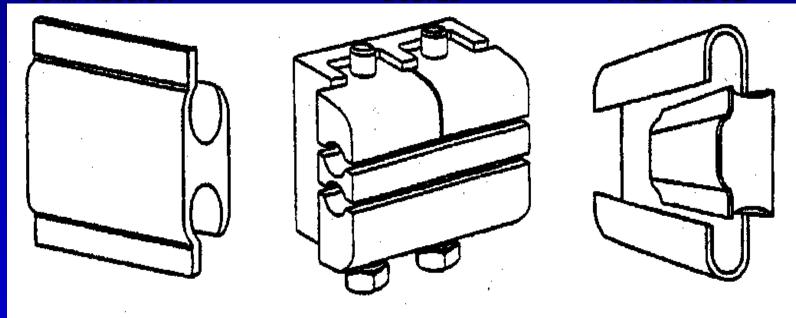
- To conduct a control field study of examining the longterm effect of a worst-case operating environment on the performance of power connection systems.
- To obtain an even more basic appraisal of the chemical severity of the exposure environment.
- Emphasis was placed on the comparative evaluation of compression, bolted and fired wedge connector systems.
- The program was initiated in 1995.

EXPERIMENTAL

- Test Site
 - Battelle Florida Marine Research Facility located in Daytona Beach.
 - The location is characterized by a high salt deposition rate from the Atlantic Ocean and a high humidity in the range of 55-60% annual average.
 - Seasonal temperature vary from approximately 0°C in winter to max. 40°C in summer.

EXPERIMENTAL

- Test Samples
 - Compression, bolted and fired wedge overhead power connectors.
 - Sample size was 50 connectors of each type.
 - AWG 2/0, 19 strand bare AAC aluminum or copper conductors.
 - All connectors supplied with a corrosion inhibitor in place.


EXPERIMENTAL

Types of overhead power connectors used in this study,

COMPRESSION

BOLTED

FIRED WEDGE

EXPERIMENTAL

- Electrical Measurements
 - Voltage drop was measured periodically using a custom-designed and computer-controlled data acquisition system.
 - The resolution of voltage measurement was $10\,\mu V$ giving resistance resolution of $2\,\mu\Omega$.
 - Current of 5 A DC was used throughout the entire exposure test.

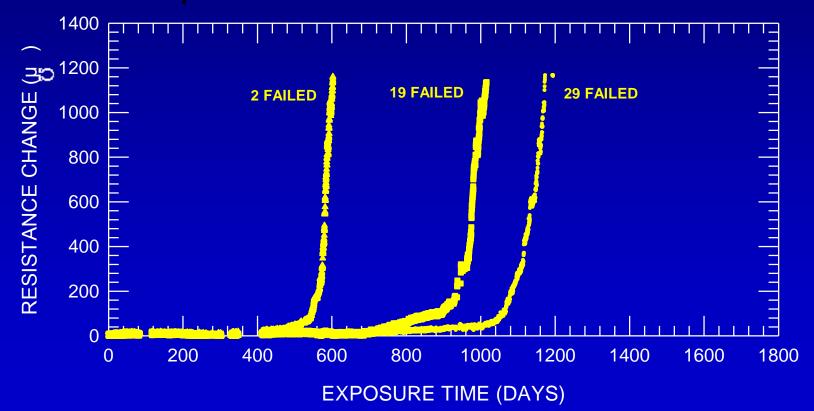
EXPERIMENTAL

- Installation
 - Connectors were installed at the site according to the practices recommended by the respective manufactures.
 - Prior to the assembly of each connector, the surfaces of all conductors were wire brushed.
 - Separate brushes were used for the copper and aluminum conductors.
 - After brushing, connections were typically made within 3-5 minutes.

EXPERIMENTAL

• Failure Criterion

- Connector was deemed to have failed when the resistance between the two corresponding equalizers increased by 1000 $\mu\Omega$ above its initial value.
- The initial value of each connector was determined as an average resistance measured for the first 100 days of exposure.

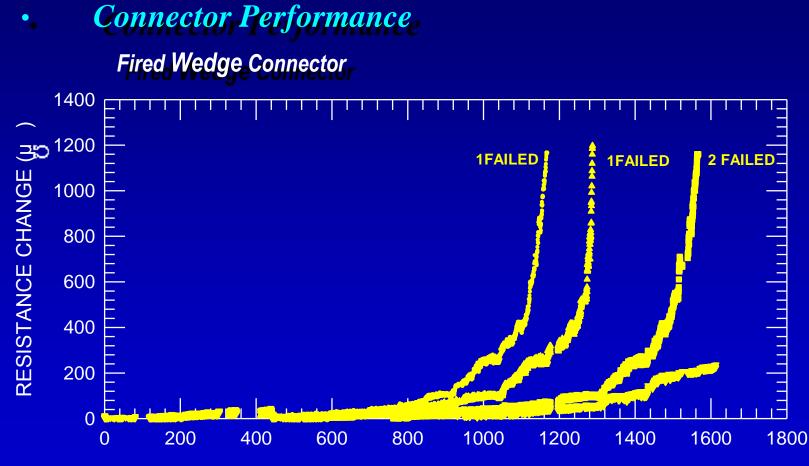

EXPERIMENTAL

- Corrosion Monitoring
 - The chemical severity of the exposure environment was monitored using Battelle reactivity monitoring coupons.
 - Coupons were specially finished and cleaned pieces of silver, copper, 1010 steel and 7075 and 6061 aluminum.
 - Corrosion rate was determined by measuring the weight gain on a microbalance.

RESULTS

• Connector Performance

Compression Connector


RESULTS

• Connector Performance

Bolted Connector

⊐;⊃1000 **2 FAILED 27 FAILED 18 FAILED RESISTANCE CHANGE EXPOSURE TIME (DAYS)**

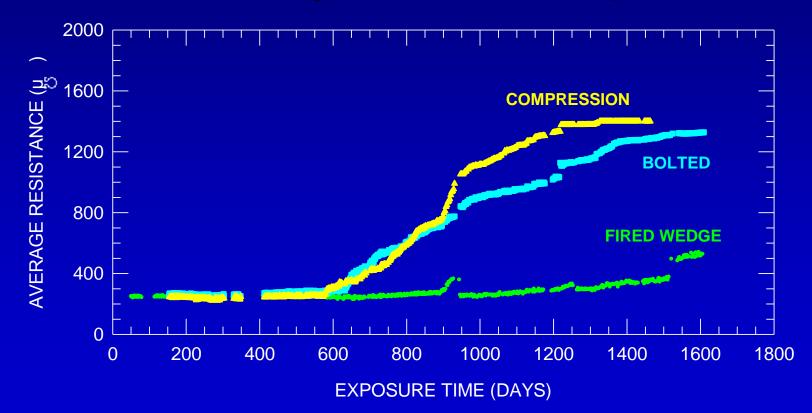
RESULTS

EXPOSURE TIME (DAYS)

•

RESULTS

Connector Performance

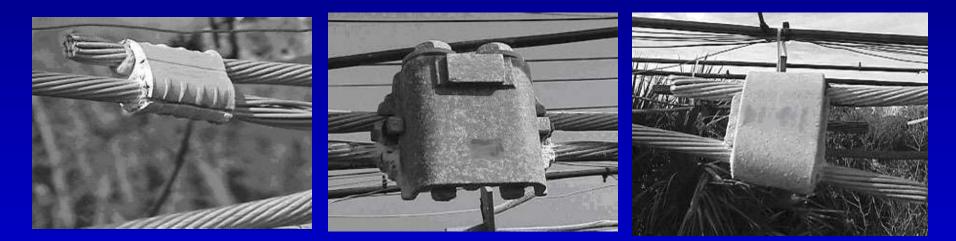

Cumulative failures over the entire exposure period

TIME TO FAILURE	FIRED WEDGE CONNECTOR	BOLTED CONNECTOR	COMPRESSION CONNECTOR
300 DAYS	0	0	0
600 DAYS	0	2	2
900 DAYS	1	18	19
1200 DAYS	1	27	29
1600 DAYS	2	-	-
TOTAL FAILED	4	47	50

RESULTS

•. Connector Performance

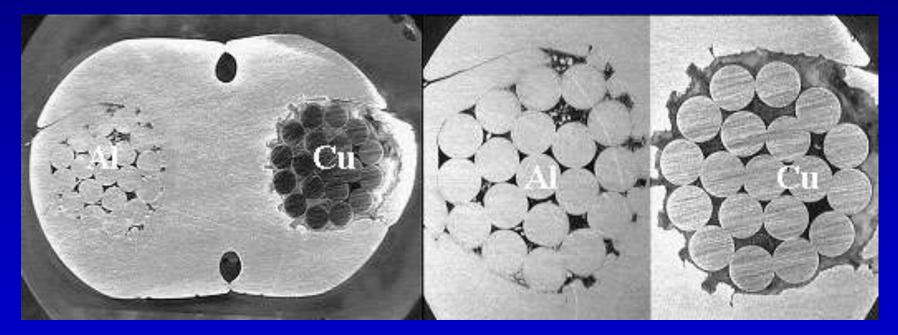
Variations of average connector resistance with exposure time


RESULTS

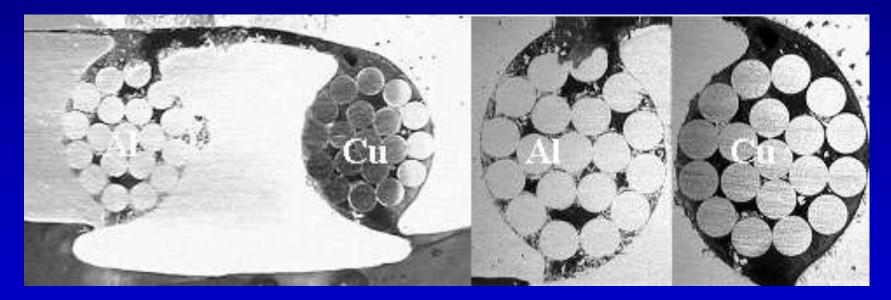
Connector Performance

Compression Connector

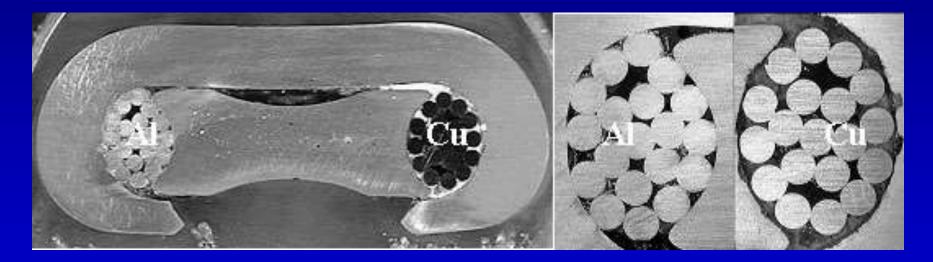
Bolted Connector


Fired Wedge Connector

Photos of compression, bolted and fired wedge connectors after 3 years of exposure at the test site.

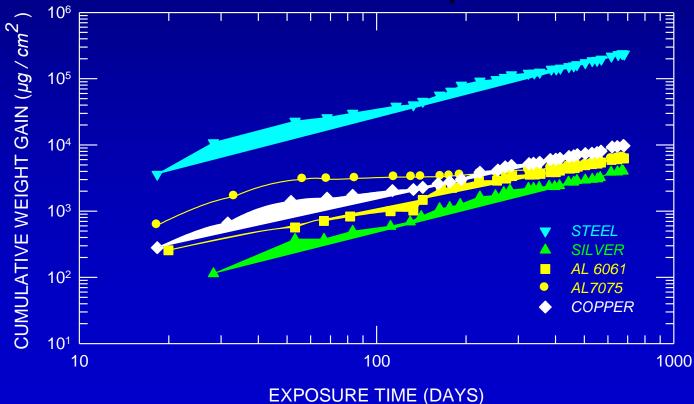

Connector Performance Compression Connector

Cross section of failed compression connector with close-up view of Al and Cu conductor-connector interface regions affected by corrosion


Connector Performance
Bolted Connector

Cross section of failed bolted connector with close-up view of Al and Cu conductor-connector interface regions affected by corrosion

• Connector Performance Fired Wedge Connector



Cross section of failed fired wedge connector with close-up view of Al and Cu conductor-connector interface regions affected by corrosion

RESULTS

Connector Performance

Corrosion rates of different metals at exposure site

- The results show that there is a considerable difference in the performance of the three connector populations used.
- Difference is manifested not only by the number of failed connectors but also by the onsets of connector failure.
- First failures occurred in compression and bolted connectors after 600 days and after 1000 days in fired wedge connectors.
- By the end of field exposure test all of the compression connectors failed, only three from bolted survived whereas only four fired wedge connectors failed.

- Plausible Failure Mechanisms
 - Loss of mechanical contact force due to metal loss at the contact interfaces.
 - Compression and bolted connectors are prone to this degradation since their design does not provide an elastic-energy storing capability.
 - The spring action of the C-member design of fired wedge connector maintains not only steady contact load but also uniform stress distribution and large metal-to-metal contact

- Plausible Failure Mechanisms
 - Growth and accumulation of corrosion products in the interspaces between conductor and connector can provoke separation of conductor from the connector.
 - Compression connectors are particularly prone to this type of degradation due to the action of mechanical forces generated by the build-up of corrosion products, that pry open the connector.
 - Bolted and fired wedge connectors showed no such susceptibility to deformation by the corrosion product build-up.

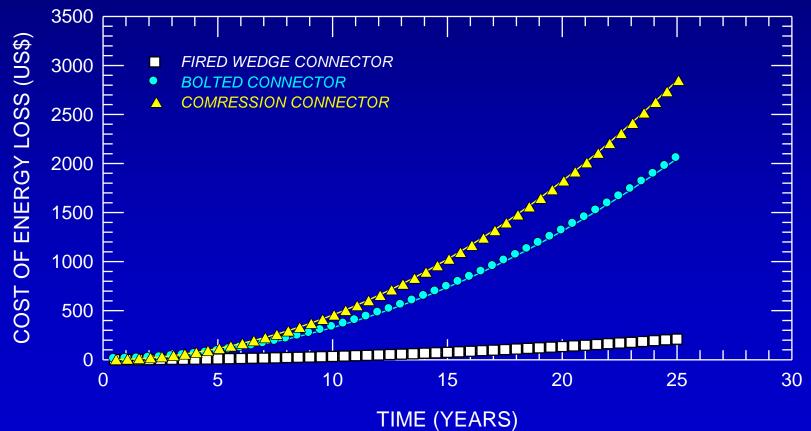
- Plausible Failure Mechanisms
 - Differential thermal expansion between copper and aluminum caused by seasonal temperature variations.
 - Differential thermal expansion results in large lateral movement of the contact interface (fretting).
 - Direct result of fretting is rupture of metallic conducting bridges, significant loss of contact area and formation of an insulated layer of debris at the contact interface.

- Economical Consequences
 - The result of this study show that exposure to a harsh environment resulted in sharp increase in the connector resistance.
 - Increase in contact resistance affects not only connector performance but creates serious economical consequence on the network as a whole.

DISCUSSION

• Economical Consequences

Calculation of cost of energy loss due to increase in connector resistance


 $C = (\Delta R / \Delta t) * I^2 * f * t^2 * (8760 / 2000) * G$

 $\Delta R/\Delta t_1$ – increase in resistance per year (x105)

I – operating current=400A f – load factor (40%)

 t_{-} time (years) G - generation cost/kWh = \$0.05

• Economical Consequences

CONCLUSIONS

- Differences in design, installation procedure and inhibitors exert major effect on the connector performance in a saline environment.
- Galvanic corrosion was the main cause for the connector failure.
- Build-up of corrosion products at the conductorconnector interface was the major factor controlling connector life.
- Connector life is largely determined by the connector design and the loss of mechanical contact load.

CONCLUSIONS

- Ever increasing load on the network will accelerate connector degradation and accentuate the importance of connector design in mitigating deleterious effects resulting from increasing connector temperature.
- The superior performance of fired-wedge connector is due to the "spring action" of the connector C-member.
- The C-member design resists loss of contact load, maintains uniform stress distribution over contact interface and assures large metal-to-metal contact area.